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Microscopic dynamics of the nonlinear Fokker-Planck equation: A phenomenological model

Lisa Borland*
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~Received 16 December 1997!

We derive a phenomenological model of the underlying microscopic Langevin equation of the nonlinear
Fokker-Planck equation, which is used to describe anomalous correlated diffusion. The resulting distribution-
dependent stochastic equation is then analyzed and properties such as long-time scaling and the Hurst exponent
are calculated both analytically and from simulations. Results of this microscopic theory are compared with
those of fractional Brownian motion.@S1063-651X~98!00206-2#

PACS number~s!: 66.10.Cb, 05.20.2y, 05.60.1w, 05.40.1j
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I. INTRODUCTION

Anomalous diffusion is exhibited in a variety of physic
systems and is therefore the subject of much current
search. It can be observed, for example, in general syst
such as plasma flow@1#, porous media@2#, and surface
growth @2#, as well as in more specific situations such
cytltrimethylammonium bromide miscelles dissolved
salted water@3# and NMR relaxometry of liquids in porou
glasses@4#. The main characteristic of anomalous diffusion
the fact that the mean squared displacement is not pro
tional to timet but rather to some power oft. If the scaling
is faster thant, then we say that the system is superdiffusiv
if it is slower than t, we say that it is subdiffusive. Th
underlying mechanisms giving rise to anomalous diffus
may differ depending on the physical system. For exam
the Lev́y-type superdiffusion, whose mean squared displa
ment is infinite but possesses a well-defined anomalous s
ing, is different from the correlated anomalous diffusion th
describes transport in a porous medium. While a diffus
equation with fractional derivatives may be used to desc
the Lev́y-type diffusion@5#, a nonlinear Fokker-Planck dif-
fusion equation has been proposed for those systems
correlated anomalous diffusion@6–9#.

An interesting feature of the nonlinear Fokker-Plan
equation is that its exact stationary solutions, and some
ticular time-dependent solutions, are just those distributi
that maximize the generalized entropy recently proposed
Tsallis @10#. That nonextensive entropy~inspired by multi-
fractals!, together with its associated generalized thermo
tistics, has also been used to provide a thermostatistical b
for Lévy-type anomalous diffusion@11#. It is of course
highly desirable to have these different types of diffusi
related to a common general theory. In fact, there is a gr
ing body of evidence for the physical relevance of that g
eralized thermostatistics in a variety of fields. It has be
used, for example, to successfully study turbulence@12#, cos-
mology @13#, self-gravitating systems@14#, linear response
theory@15#, the solar neutrino problem@16#, and bremsstrah
lung @17# among many other interesting physical systems
has also been shown to be intimately related to the sca
properties of multifractal attractors@18#.

*Electronic address: lisa@cat.cbpf.br
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The explicit form of the nonlinear Fokker-Planck equ
tion is given by

d fm

dt
52

d

dx
~K f m!1Q

d2

dx2
~ f n!, ~1!

whereK is the drift coefficient,Q is the diffusion constant,
andm andn are real numbers.t corresponds to time, whilex
denotes a state variable of the system. We assume thatx is
rescaled to be dimensionless. Equation~1! reduces into the
standard,linear, Fokker-Planck equation form5n51. Plas-
tino and Plastino@6# recently found exact time-depende
solutions in the form of the Tsallis distribution form51 and
the drift forceK proportional tox. Tsallis and Bukman@7#
found exact solutions for the more general case of arbitr
m andn with a drift force of the formK5k11k2x. Stariolo
@19# studied the long-time behavior for systems withK50
and arbitrarym andn. Also, Compteet al. @8,9# have studied
solutions of a similar form in several dimensions and un
shear flows. Note also that it has been shown@20# that even
the standard linear Fokker-Planck equation may give rise
the stationary Tsallis distribution in a variety of peculi
cases. However, the linear Fokker-Planck equation typic
leads to normal diffusion and will not be discussed in t
current context.

Up until now, most of the discussion of correlated anom
lous diffusion has been done on the macroscopic level, ba
on diffusion equations such as Eq.~1!. We now know a
substantial amount of information about the properties of
probability distribution that satisfies the Fokker-Planck eq
tion of that form. However, there has yet been little or
effort in defining and studying the underlying microscop
dynamics that ultimately gives rise to a macroscopic leve
description. This is the main objective of the current wo
We shall derive and analyze the underlying stocha
Langevin equation that corresponds to the nonlinear Fok
Planck-like equation presented below. The derivation, wh
is done in Sec. II, is consistent with the standard theory
stochastic processes and Fokker-Planck equations. In Se
we discuss solutions and realizations of the microscopic
chastic dynamics and in Sec. IV we study the long-time sc
ing behavior of the system. We then compare these res
with those obtained for the well-known microscopic syste
of fractional Brownian motion, which gives rise to anom
6634 © 1998 The American Physical Society
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57 6635MICROSCOPIC DYNAMICS OF THE NONLINEAR . . .
lous diffusion with a scaling power proportional to the Hu
coefficient H of the process. Finally, a discussion of th
work is presented in Sec. V.

II. THE LANGEVIN EQUATION

A. The µ51 case

First, let us start by deriving the nonlinear Fokker-Plan
equation form51, namely,

d f

dt
52

d

dx
~K f !1Q

d2

dx2
~ f n!, ~2!

from an arbitrary stochastic Ito-Langevin equation of t
form

dx

dt
5K~x,t !1g~x,t !h~ t !. ~3!

We as yet make no assumptions on the noiseh other than
that

^h&50. ~4!

Also, let K andg be arbitrary functions. We proceed alon
the same lines as for the standard linear case@21#. The fol-
lowing relation holds:

f ~x,t1Dt !5E P~x,t1Dtux8,t ! f ~x8,t !dx8, ~5!

where f (x,t) is the probability distribution of the particle
having valuex at time t and P denotes the transition prob
ability between state values. The idea now is to setx5x8
1Dx and to expand the integrand in Eq.~5! into a Taylor
series for smallDx. One obtains

P~x,t1Dtux8,t ! f ~x8,t !5S 2Dx
d

dx
P~x1Dx,t1Dtux,t !

1
~Dx!2

2

d2

dx2
P~x1Dx,t

1Dtu,x,t !D f ~x,t !1¯, ~6!

which can be integrated with respect todDx to give

f ~x,t1Dt !5S 2
d

dx
^Dx&1

1

2

d

dx2
^~Dx!2&1¯ D f ~x,t !,

~7!

with

^Dx&5E Dx P~x,1Dx,t1Dtux,t !dDx ~8!

and likewise for̂ (Dx)2&. In the limit of Dt→0, these are the
first two so-called Kramers-Moyal expansion coefficien
The problem now lies in evaluatinĝDx& and ^(Dx)2&. To
this end we use the Langevin equation~3! so that
t

k

.

^Dx&5K E
t

t1Dt

ẋ dt8L ~9!

5K E
t

t1Dt

K~x,t8!dt8L 1K E
t

t1Dt

g~x,t8!dW~ t8!L ,

~10!

where special attention must be given to the varia
dW(t)5h(t)dt, which defines the stochastic integratio
The integration rules are slightly different, depending
whether one uses the Ito or Stratonovich calculus. In the
calculus, one assumes that the value ofx at time t is deter-
mined by happenings prior to the stochastic force ofh(t).
This results in the statistical independence ofx and h, but
also introduces some rules of calculus different from
usual ones. In the Stratonovich calculus, the variablex is
valued at timet, whereas the stochastic variableh is evalu-
ated at time intermediate tot andt1dt. This does not allow
for a statistical independence betweenx and h, but does
allow for the usual rules of calculus. In our work we prefer
use the Ito calculus, but point out that the results of o
calculus can be mapped onto the other quite easily.

Within the Ito calculus we can treatg(x,t) anddW(t) as
statistically independent, so that after use of^dW&50 we
obtain from Eq.~10!

^Dx&5K~x,t !Dt. ~11!

Similarly, for ^(Dx)2& we get

^~Dx!2&5E
t

t1DtE
t

t1Dt

^g~x,t8!g~x,t9!&^dW~ t8!dW~ t9!&

~12!

where we have discarded terms of second order and high
Dt. In the standard theory, one assumes that the nois
white noise such that

^dW~ t8!dW~ t9!&5d~ t82t9!dt8. ~13!

In that case it is easy to see that

^Dx2&5g2~x,t !Dt ~14!

up to orderDt. Inserting the results of Eqs.~11! and~14! into
Eq. ~7! and taking the limitDt→0 yields the standard
Fokker-Planck equation

d f

dt
52

d

dx
@K~x,t ! f #1

1

2

d2

dx2
@g2~x,t ! f #, ~15!

with g25Q in the simplest case of constant diffusion.
So far we have simply reviewed the standard derivation

the linear Fokker-Planck equation from a microscopic I
Langevin equation. Our quest now is to see if and how
derivation can be modified so that we instead obtain thenon-
linear Fokker-Planck equation of Eq.~2!. To achieve this we
see that we must require all the results to stay the sa
except that for̂ (Dx)2& of Eq. ~12! we must require
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E
t

t1DtE
t

t1Dt

^g~x,t8!g~x,t9!&^dW~ t8!dW~ t9!&5Q fn21.

~16!

The question now is how this can be achieved. The m
straightforward way that leaves the rest of the theory inv
ant is to assume that the noise satisfies the standard cond
~13!, which implies that

g~x,t !25Q fn21~x,t !. ~17!

This result appears at first quite counterintuitive. Howev
let us focus on the mathematics for a moment. It follo
from our derivation that, ford-correlated white noise, the
only way in which the nonlinear Fokker-Planck equation c
arise from a microscopic Langevin equation is if Eq.~17!
holds. Furthermore, we see that anf dependence ing does
not interfere with the derivation of the macroscopic differe
tial equation forf , so this choice is possible within the ex
isting theory. The resulting Ito-Langevin equation has
form

dx

dt
5K~x,t !1AQ f~x,t !~n21!/2h~ t !, ~18!

where the evolution off is given by the Fokker-Planck equa
tion of equation~2!. A trajectory of Eq.~18! is determined by
both equations simultaneously. It is apparent that ther
feedback from the macroscopic level of description of
system in terms of the probability distributionf to the mi-
croscopic kinetics.

B. Colored noise

Before discussing the physical interpretation of the res
~18!, let us return to Eq.~16! and see if there is any othe
way in which it could be satisfied. This would entail liftin
the constraint that the noiseh(t) is d-correlated Gaussian
noise and studying what may happen then. To this end
quote well-known results@22#. If Gaussian distributed
d-correlated noise is used then the Fokker-Planck equa
~15! is exact in the sense that the higher-order Krame
Moyal coefficients of the Taylor expansion~7! are equal to
zero. If one usesd-correlated non-Gaussian noise then so
of those terms typically do not vanish, but the linear Fokk
Planck equation is still a good approximation in most cas
No nonlinearities inf are introduced. Colored noiseh(t)
with a finite correlation time proportional tog21 also results
in a linear yet non-Markovian problem. The memory effe
in the noise can typically be dealt with by introducing
additional variable into the system, such that

dx

dt
5s~x,t !1g~x,t !h~ t !, ~19!

dh

dt
5 s̃~h!1g̃~h!h~ t !, ~20!

whereh can now be treated asd-correlated white noise an
s, g, s̃, and g̃ are arbitrary functions. In other words, th
introduction of colored noise only raises the dimension of
problem. It does not introduce nonlinear orders off in the
st
i-
ion
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Fokker-Planck equation. Furthermore, the Fokker-Pla
equation corresponding to Eqs.~19! and~20! is certainly not
even of the linear form~15! due to its non-Markovian nature

As a remark, we point out that it can be shown@22# that
for large g one can neglect Eq.~20! and replaceh(t) with
noise of Stratonovich type. Those results can then be tra
formed into the Ito calculus@22# so that the correspondin
Ito process is given by

dx

dt
5S s~x,t !1

1

2
g~x,t !

d

dx
g~x,t ! Ddt1g~x,t !dW~ t !.

~21!

By choosing to useg as above in Eq.~17! and

s~x,t !5K~x,t !2
n21

4

d f

dx
f n22, ~22!

we see that this system also gives rise to the nonlin
Fokker-Planck equation~2!. These results are essential
what we would have obtained if we had started out by us
the Stratonovich calculus in the first place, even w
d-correlated white noise. This is because the additional te
in the drift coefficient~22! is a direct result of the correlation
between the variablex and the noise. This effect is, howeve
already incorporated within the Stratonovich calculus.

Based on the above discussion, we conclude that the n
linear terms in Eq.~16! do not arise as an effect of colore
noise. It is important to realize that colored noise turns
problem into a non-Markovian one, so that the form of t
resulting Fokker-Planck equation itself will be non
Markovian andnot of the form of Eq.~2!, which is obviously
Markovian. Only in the limit of white noise is a Markov
approximation valid and we can recover the form of the no
linear Fokker-Planck equation~2! within a Stratonovich rep-
resentation. Here again, however, a microscopic depend
on f is required.

C. Interpretation

In summary then, in order to obtain the nonlinear Fokk
Planck equation~2! we are led to accept that the stochas
force depends, as in Eq.~16!, on the probability distribution
f . In the Ito calculus, within which we prefer to work in thi
paper, this results in thef -dependent Langevin equation~18!.
What does thisf dependence mean and how can it arise?

Let us illustrate what is going on by visualizing the st
chastic trajectories described by the Langevin equation~18!
as the motion of a particle in a potential well defined byV
52*K(x)dx. In the absence of a stochastic force the p
ticle would sit still at the minimum of the well. In the pres
ence of a stochastic force the particle gets knocked arou
so that it may in principle traverse the entire well. Ifn51,
standard Brownian motion is recovered. In that case,
sizes of the random kicks are uniform and do not depend
where in the well the particle happens to be. If one wa
long enough, the entire well will become traversed. Ho
ever, in thenÞ1 cases, we see that the size of the rand
kicks changes in space and time. In particular, it will chan
such that highly frequented regions of the well will tend
have larger~or smaller! kicks, depending on the value ofn.
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This creates a bias in the ergodic behavior of the syst
Some regions of the well will become traversed at a mu
higher rate than others, while others will become forbidd
Though in principle the entire well may be traversed if o
waits long enough, the dependence on the powers of p
abilities serves to cleave the phase space of the system
effectively nonergodic space is created for the stochastic
tem to exist in. The phase space might even have the c
acter of something similar to a multifractal.

It is a harder task to explain the physical origin of thef
dependence in the microscopic dynamics. For system
which we interpretf as a density this poses no philosophic
problems. The microscopics may well depend on actual d
sities. However, if we wish to interpretf as a probability
distribution, then perhaps the natural place to look is to
treatment of the bath variables. Remember that the stoch
term in the Langevin equation is the net result of the int
action of the system variablex with a bath, whose variable
have been appropriately eliminated. The classic works
Ford et al. @23# and Zwanzig@24# treat this problem for the
standard case ofm51. Yet their result is strongly depende
on ad hocassumptions about the interaction Hamiltonian
the bath variables together with their initial distribution.
may be possible to generalize those assumptions to resu
the f -dependent term that we obtain in the nonlinear I
Langevin equation. That work is currently in preparation b
beyond the scope of this paper. For now, we simply prop
that thef -dependent term isa phenomenological descriptio
of the interaction of the particle with the bath. We assume
that the bath variables ared correlated, yet the entire dynam
ics is only defined on a~possibly multifractal! subset of
phase space, which is modeled by thef (n21)/2 term. Of
course, in a real experimental situation many different ty
of interactions between the bath and the system could
rise to the same phenomenologicalf -dependent description
Indeed, the exact form of these interactions must be gui
by the physics of the particular system under study.

D. The µÞ1 case

We now look at the nonlinear Fokker-Planck equation
the form ~1! with general values of the parameterm. The
derivation remains the same, except that we are now see
a differential equation forf m. In particular, this implies tha
we must start out with the relation

f m~x,t1Dt !5E P~x,t1Dtux8,t8! f m~x8,t !dx8, ~23!

instead of Eq.~5!. Using the same arguments as before,
obtain the kinetic equation

ẋ5K~x!1AQ f~x,t ! ~n2m!/2h~ t !, ~24!

where f satisfies the nonlinear Fokker-Planck equation~1!.
The important observation to make at this point is that
though Eq.~24!, together with Eq.~1!, describes a kinetic
Ito-Langevin equation,the probability distribution of the
process is not given by f. Instead, the probability distribution
of the process is given byf m. This can easily be seen a
follows. Using the Ito-Langevin equation~24! we write
.
h
.

b-
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down a Fokker-Planck equation in the usual way, with E
~5! as the starting point. We denote the probability distrib
tion by f̃ and obtain

d f̃

dt
52

d

dx
K f̃ 1

d

dx2
~ f n2m f̃ !, ~25!

where f satisfies the nonlinear Fokker-Planck equation~1!.
However, we can setn2m5m( ñ21), with ñ5 n/m, result-
ing in

d f̃

dt
52

d

dx
K f̃ 1

d

dx2
@~ f m!ñ21 f̃ #. ~26!

However, we know from Eq.~1! that the solution to this
equation is given byf̃ 5 f m. We have thus shown that th
probability distribution of the kinetic process correspondi
to the nonlinear Fokker-Planck equation~1! with generalm
is given by f m and not by f . Note that although one wa
previously aware that the nonlinear Fokker-Planck equa
~1! could be mapped onto them51 case by introducing a
new variablef̃ 5 f m and usingn5 n/m @7#, it was not pointed
out that the probability distribution of the process is given
f̃ 5 f m and not byf . This is an important distinction becaus
it can otherwise lead to mistakes. For example, in the pa
by Stariolo@19# f is used as the probability distribution from
which certain long-time properties of the system are cal
lated. In particular, he finds that the system both violates
fluctuation-dissipation relationship as well as exhibits pro
erties of aging. However, if instead the probability distrib
tion f m is used, the aging effects disappear. The violation
the fluctuation-dissipation relationship is nevertheless s
valid.

III. SOLUTIONS

A. Stationary nonlinear Fokker-Planck equation

Exact solutions to the nonlinear Fokker-Planck equat
in form of the time-dependent Tsallis distribution have be
found by Plastino and Plastino form51 @6# and Tsallis and
Bukman formÞ1 @7#. However, for the reasons discuss
above, we focus our attention on them51 case in most of
what follows. Our system of interest is therefore given by t
Langevin equation~18! together with Eq.~2!. We emphasize
that thef occurring in the Langevin equation is the solutio
to the nonlinear Fokker-Planck equation and not just a
arbitrary distribution. For linear drift, this probability distri
bution is a Tsallis distribution. The form that satisfies t
stationary nonlinear Fokker-Planck equation is

f q~x!5
1

Zq

@12b~12q!V~x!#1/~12q!, ~27!

where Zq takes care of normalization andV(x)
5*K(x8)dx8 is the potential. The parameterb is given by

b5
2

Q

Zq
q21

~22q!
~28!
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and the relation

n522q ~29!

holds. Furthermore, this distribution maximizes the gene
ized Tsallis entropy@10#, which has the form

Sq5
12*dx@ f ~x!#q

q21
~30!

and is the foundation of the actively studied generalized th
mostatistics. The Tsallis entropy reduces to the stand
Boltzmann-Gibbs entropyS52* f lnfdx in the limit q→1
and possesses most of the same qualities, but not tha
extensivity. The degree of thisnonadditivity of the Tsallis
entropySq is quantified by the Tsallis indexq.

Becausef is a positive quantity, we must imposef q(x)
50 if the term in square brackets on the right-hand side
Eq. ~27! becomes negative.~This is known as the Tsallis
cutoff.! By looking at the behavior of the stationary distrib
tion f q(x) we see that this happens when

12q

22q
.

Q

2Zq
q21V~x!

, ~31!

where bothQ and Zq are under the physical constraints
positivity: Zq because it is the integral of positive probabi
ties andQ because it is the square of the amplitudes of
stochastic fluctuations. Forq,2 this inequality can easily be
satisfied because the left-hand side of the equation
bounded from above by 1. However, there is a singularity
q52, beyond which the left-hand side soars to infinity a
becomes bounded from below by 1. We shall discuss
parameter regionq.2 later on. For now, let us focus on th
q,2 region.

B. Realizations for q<2

The time-dependent solution to the nonlinear Fokk
Planck equation with linear drift has the form

f q~x,t !5
1

Zq~ t !
$12b~ t !~12q!@x2xM~ t !#2%1/~12q!,

~32!

where

b~ t !

b~0!
5S Zq~0!

Zq~ t !
D 2

. ~33!

Here we takeZq(0)5Zq and b(0)5b as defined above
from the stationary distribution.Zq(t) andxM(t) are given as
in Refs.@6#,@7#. An example of this solution at two differen
times for different values ofq is shown in Fig. 1. Corre-
spondingly, simulations of the stochastic paths generated
the probability-dependent Ito-Langevin equation~18! can
readily be computed. Several realizations are shown in Fi
for different values ofq but constant choice ofK andQ. The
main distinguishing feature between paths with differenq
values is, as expected, in the behavior of the fluctuatio
Note that forq51.5 there are sharp swings in the fluctu
l-

r-
rd

of

f

e

is
t

e

-

by

2

s.
-

tions. The fluctuations are larger if the particle approache
forbidden ~or low probability! region of state space, whic
essentially serves to drive it back to the more favored~high-
probability! region where the noise is lower and more co
fining. A quite different behavior is demonstrated by theq
524 example. The amplitude of the noise is suppressed

FIG. 1. Tsallis distributions, the exact solutions to the tim
dependent nonlinear Fokker-Planck equation, are shown at timt
50 and 100 forq51.5 and24 with K520.5x andQ50.5.x is a
dimensionless state variable andt represents time in arbitrary units

FIG. 2. Simulations of the stochastic trajectories obtained fr
the f -dependent Ito-Langevin equation~18! for different values ofq
with K520.5x and Q50.5. The main distinguishing feature be
tween paths is in the behavior of the fluctuations and the tende
of the paths to fill out the phase space. Forq51.5 the fluctuations
are larger if the particle approaches a forbidden~or low probability!
region of state space, driving it back to the more favored~high-
probability! region where the noise is lower and more confinin
For q524, the amplitude of the noise is suppressed all over s
space so that the particle stays close to the most probable~most
frequented! region. Forq51 we have normal Brownian motion o
a particle with constant noise amplitude. The behavior of the tra
tories is well reflected in the shapes of their corresponding pr
ability distributions~see Fig. 1!. x is a dimensionless state variab
of the system andt corresponds to time in arbitrary units.
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over state space so that the particle stays close to the
probable~most frequented! region, with very low chance o
departing. As a comparison, we also show the standarq
51 case, which represents the usual Brownian motion o
particle with constant noise amplitude. Note that for this s
tem the noise appears quite homogeneous and the pa
wanders off freely in any direction. The behavior of the tr
jectories is also well reflected in the shapes of their co
sponding probability distributions, a few of which are show
in Fig. 1. Note the narrow shape of the Tsallis distributi
for q524 as opposed to the broader one obtained foq
51.5. Furthermore, we point out that the long-time statio
ary probability distributions for theq,2 regime all have the
appearance of stable, well-defined packets, even in the
particle case (K50).

C. Realizations for q>2

Now let us return to the case ofq.2. As discussed in
Ref. @7#, the regionq.3 leads to unphysical solutions due
the fact that it becomes impossible to normalize the tem
rally dependent Tsallis distribution. However, we must s
look at the region 2,q,3. For those values, the inequali
~31! is satisfied only by a select choice ofQ and V. The
resulting distribution has the two-peaked shape presente
Fig. 3. Some sample trajectories are also presented. We
that initially there is a symmetry breaking. Because valu
x50 have low probability, the paths diverge toward eith
x.0 or x,0. The behavior of the paths reflects the form

FIG. 3. Unphysical solutions forq.2. The distribution in~a!
has a two-peaked shape, reflecting the symmetry breaking in
paths shown in~b!. In time, the peaks in the distribution are limite
to d functions at6`. This narrowing of the allowed values ofx is
unphysical, defying the basic principle of entropy production. F
thermore, the stochastic paths soon get kicked into the forbid
f 50 region.x is a dimensionless state variable andt denotes time
in arbitrary units.
ost
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the distribution quite well. However, after a certain time, t
peaks in the distribution become very narrow, limited tod
functions at6`. This narrowing down of the allowed value
of x is unphysical because it implies that one would ha
more specific information about the location of the partic
as time goes on, defying the basic principle of entropy p
duction. This is reflected in the simulations of the trajector
in that the fluctuations in the stochastic paths quite quic
drive the system into the paradoxical region wheref 50.
This region is forbidden in theq.2 case because of th
singularity that appears in the nonlinear Fokker-Planck eq
tion for those values ofq.

The physically more relevant form of the nonline
Fokker-Planck equation in the regime 2,q,3 is defined by

ẋ52K~x!1AQ f~x,t !~n21!/2h~ t !, ~34!

ḟ 52
d

dx
~K f !2Q

d2

dx2
~ f n!, ~35!

with n522q. The negative sign ofQ in the Fokker-Planck
equation is motivated as follows. Forq.2 the effective dif-
fusion of the system is divergent. Therefore, our origin
postulate~5! must be changed to read

f ~x,t1Dt !52E P~x,t1Dtux8,t ! f ~x8,t !dx8. ~36!

This reflects the fact that the divergent diffusion coefficie
has a repulsive effect. Interpretingf as a density, this is
easier to understand. The density of particles at positionx at
time t1Dt is not equal to the flux that flows in at that time
but rather equal to what is left after flux has been spewed
due to the repulsion. Using Eq.~36! as the starting point to
derive a macroscopic Fokker-Planck equation for the Lan
vin equation in the same fashion as we did before in Sec
Eqs.~35! and ~34! follow naturally.

The effectively negative diffusion coefficient (2Q) in the
nonlinear Fokker-Planck equation contributes a minus s
to the inequality of Eq.~31!. Because of this, it is now easil
fulfilled for a general choiceof Q andV. A solution to Eq.
~35! is shown in Fig. 4 forK52x, Q50.1, andq52.5. Note
that the Tsallis probability distribution disperses in a phy
cal manner as time increases. Also, our simulations of
correspondingf -dependent stochastic paths appeared to
stable and well behaved.

IV. SCALING

A. The free particle

We shall use the kinetic Ito-Langevin equation~18! to-
gether with Eq.~2! to calculate the long-time scaling beha
ior of the process form51. To this end, we consider the fre
particle case whereK50 and Eq.~18! reduces to

ẋ5AQ f ~n21!/2h~ t !. ~37!

The question is, if̂ x(t)x(t8)& behaves in a certain way, the
how doeŝ x(bt)x(bt8)& behave? We obtain

he
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x~ t !5AQE
0

t

f „x~t!,t… ~n21!/2dW~t! ~38!

and consequently

^x~ t !x~ t8!&5QE
0

tE
0

t8
^ f „x~t!,t…~n21!/2f ~x~t8!,t8! ~n21!/2&

3^dW~t!dW~t8!&

5QE
0

t

f „x~t!,t…n21dt5^x~ t !2&, ~39!

t5min~ t,t8!

where we have used the Ito calculus and the relation~13!.
We adopt the exact solution forf (x,t) for K50 from Refs.
@7# and @19#, which is of the form~32! and ~33! with the
normalization given by

Zq~ t !5$Zq~0!11n12n~n11!Qb~0!@Zq~0!#2t%1/~11n!.
~40!

Furthermore,xM(t)5xM(0) is the mean position and can b
treated as a constant. Equation~39! becomes

^x~ t !2&5QE
0

t

~a1at!~12n!/~n11!2c@x~t!2xM#2

3~a1at!21dt, ~41!

with a5Zq(0)11n, a52n(n11)Qb(0)Zq(0)2, and c
5b0Zq(0)2. Using the relationship~29! betweenq and n,
we can alternatively express the exponent

FIG. 4. Physical solutions forq.2 with K52x, Q50.1, and
q52.5.x is a dimensionless state variable andt corresponds to time
in arbitrary units. The Tsallis probability distribution in~a! dis-
perses in a physical manner as time increases. In~b!, a well-
behaved stochastic trajectory is shown.
12n

11n
5

q21

32q
5F~q!. ~42!

The integral in Eq.~41! is nontrivial to evaluate because o
the termx(t) occurring in the integrand. However, ifF(q)
>21, which is satisfied for values2`<q,3 that are of
physical interest to us here, then the integral will be dom
nated by the first term, which is easy to integrate. We obt

^x~ t !2&5Q
32q

2a
~a1at !2/~32q!. ~43!

Consequently, we see that the process satisfies the sc
relationship

^x~bt!2&5b2/~32q!^x~ t !2& ~44!

for t→`. This result reproduces that obtained by Stario
@19# for m51, which was calculated as an ensemble aver
using the solution to Eq.~1! with m51. We also calculated
the scaling coefficients from ensembles of simulated stoch
tic trajectories using Eq.~37! for different values ofq. The
log-log plot in Fig. 5 shows these results, which agree w
with the analytic result of Eq.~44!.

As a final remark, let us turn our attention to themÞ1
case of Eq.~24!. We wish to calculate the scaling behavi
for arbitrary m. However, because Eq.~24!, together with
Eq. ~1!, can be mapped onto Eqs.~18! and~2! by substituting
n with ñ5 n/m, we obtain the same results as in Eq.~44! for
the m51 case, except that we now have

q522
n

m
~45!

FIG. 5. Scaling coefficients from ensembles of simulated s
chastic trajectories using Eq.~37! for different values ofq were
calculated. The results shown here in this log10-log10 plot indicate
good agreement with the analytic result~44!. For q.1 the scaling
is superdiffusive and forq,1 it is subdiffusive.
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instead of Eq.~29!. This result does not agree with themÞ1
result obtained by Stariolo@19#, which was calculated as a
ensemble average based on using the functionf as the prob-
ability distribution of the process described by the nonlin
Fokker-Planck equation~1!. Our results indicate that th
long-time scaling of̂ x(t)x(t8)& doesnot exhibit the aging
phenomena that he found. As mentioned earlier in this pa
we attribute this discrepancy to the fact that the true pr
ability distribution of the process is given byf̃ 5 f m and not
by f .

B. Comparison with fractional Brownian motion

It has already been pointed out that both the nonlin
Fokker-Planck equation and a diffusion equation with fra
tional derivatives are good candidates for describing p
cesses with anomalous diffusion@7,9,5#. The fractional dif-
fusion equation is better suited to describe Levy-ty
processes, whereas the nonlinear diffusion equation tr
correlated anomalous diffusion. Compteet al. @9# recently
discussed a comparison of scaling within these two form
isms, based on the level of the diffusion equation. Th
showed that a process that scales as^x(t)2& }tg may be
described either as the result of nonlinear diffusion or by w
of a diffusion equation with fractional derivatives. The
comparison was made based on studies of the macrosc
distribution equations, with the goal of elucidating which
the two formalisms provides a better description of anom
lous diffusion under specific circumstances. Here we wo
like to make a similar comparison, but based on the anal
of the microscopic dynamics of the stochastic paths inste

In the fractional derivative formalism, a stochastic path
described by@25#

x~ t !5GE
0

t

~ t2t!H2 1/2dt, ~46!

where H is the Hurst exponent defined in the interval
,H,1 andG is a positive constant. Normal Brownian mo
tion is obtained withH5 1

2. It is a well-known result that the
process defined by Eq.~46! scales as

^x~bt!2&5b2H^x~ t !2&. ~47!

A comparison with our results of Eq.~44! shows that the
process generated by the Langevin equation~37! scales in
time as a fractional Brownian motion process where
Tsallis parameterq is related to the Hurst parameterH
through

H5
1

32q
. ~48!

However, this relationship is only valid for2`,q,2 be-
cause of the range of definition of the Hurst parameter.
can therefore say that if a process diffuses as^x(t)2& }tg

with 0,g,2 it may be described by either Eq.~46! or a
process of the type~37!. If g.2 then it is more likely de-
scribed by Eq.~37!.

The relationship~48! betweenq andH is valid only when
discussing the scaling behavior of the two processes.
stronger statement that the Hurst parameter of
r
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f -dependent Langevin processes is equal to (32q)21,
which can easily be misread as Eq.~48!, is not true. We
calculated the Hurst coefficient for different values ofq us-
ing simulated data obtained from numerical realizations
Eqs. ~18! and ~2!. We used the original definition of Hurs
~see Ref.@26#!, namely, that

R

S
5S t

2D H

, ~49!

where the rangeR is given by

R5 max
1<t<t

X~ t,t!2 min
1<t<t

X~ t,t!, ~50!

with X equal to the accumulated departure from the mean
the stochastic increment within the time intervalt, namely,

X~ t,t!5(
i 51

t

@z~ i !2^z&t#, ~51!

with

^z&t5
1

t (
t51

t

z~ t !. ~52!

Herez(t) represents the increment of the stochastic varia
x of Eq. ~37! in the intervaldt. Similarly, the standard de
viation S is defined as

S5S 1

t (
t51

t

@z~ t !2^z&t#
2D 1/2

. ~53!

Using these definitions, we calculatedR/S for different q.
The results are shown in the log-log plot of Fig. 6. We s

FIG. 6. Hurst coefficientH defined byR/S5(t/2)H, calculated
from simulated stochastic trajectories for different values ofq. This
log10-log10 plot shows thatH50.5 in all cases, reflecting the fac
that there is no memory in these systems.
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thatH50.5 in all cases, independently ofq. This result is to
be expected because it reflects the fact that thef -dependent
Langevin processes have no memory in time and are thus
result of completely uncorrelated statistical events. The fr
tional Brownian motion, on the other hand, has a memo
which is described by thet term under the integral in Eq
~46!. These results indicate that a calculation of the Hu
coefficient for a process showing anomalous scaling of
form ^x(t)2& }tg may be used to discriminate whether
stems from a process within the framework of the nonlin
Fokker-Planck equation as opposed to a fractional Brown
motion process.

V. DISCUSSION

We have in this paper explored a form for the underlyi
microscopic Langevin equation that gives rise to the non
ear Fokker-Planck equation. We have seen that the stoch
force in the Ito-Langevin equation depends on powers of
probability of the process itself. This dependence serve
cleave the phase space within which the process m
traverse, essentially creating a nonergodic system. We
gest that an explanation for the dependence on the prob
ity distribution of the system may be due to a particular a
specific interaction between the system and the bath v
ables. Details of these ideas are, however, the subjec
current work and lie outside the scope of this paper. If o
instead interprets the probability distributionf as a distribu-
tion of real densities rather than a statistical description
the ensemble, there are no problems in understanding
interpreting our result. In such a case, the microscopic
namics may well depend on a real field of densities in
form we propose.
ys

.

he
c-
,

t
e

r
n

-
tic
e
to
y
g-
il-

d
ri-
of
e

f
nd
-

e

Several realizations of the stochastic paths generated
the f -dependent Langevin equation in the case of linear d
force were simulated. In that case@6,7#, the time-dependen
solutions to the nonlinear Fokker-Planck equation are
those distributions that maximize the generalized entropy
cently proposed by Tsallis. We analyzed the behavior
somef -dependent stochastic paths corresponding to diffe
values of the Tsallis indexq. This illustrates how the ergodic
behavior of the system depends on the value ofq. Our find-
ings support other connections recently found between n
extensivity and ergodicity@27#.

Furthermore, we studied the long-time scaling behavio
the free particle, based on thef -dependent microscopic dy
namics of the system. No aging effects were found, contr
to the results of@19#. Our results were compared with thos
obtained for the well-known system of fractional Brownia
motion, which gives rise to anomalous diffusion with a sc
ing power proportional to the Hurst coefficientH of the pro-
cess. We found that although both systems lead to ano
lous scaling behavior, the Hurst coefficient of th
f -dependent Langevin process is alwaysH50.5 and does
not depend on the scaling power~and therefore not on the
Tsallis parameterq). This reflects the fact that ou
f -dependent Langevin equation does not contain long-t
memory.
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